π0 and Direct Photon Production in p+p and d+Au Collisions at RHIC-PHENIX

PH*ENIX

Hisayuki Torii for the PHENIX collaborations
Hiroshima Univ., Japan
CIPANP2006, 2006/Jun./2

Hard Probe in p+p

- $\pi 0$ in RHIC is a good tool for gluon jet
- Photon in p+p is a good probe for the parton structure.
 - Leading process
 - Higher order
 - Bremsstrahlung Process
- Why RHIC?
 - RHIC provides the highest energy as p+p collisions.
 - Very unique
 - Less theoretical uncertainty
 - As a basic for gluon spin measurement in the future.
 - A reference for d+Au and Au+Au.

 π^0 and photon in p+p is a testing ground of pQCD

Why d+Au?

- Nuclear Effect
 - Initial Parton Distribution
 - kT
 - (EMC effect)
 - (Shadowing, anti-shadowing)
 - (color glass condensate)
 - Final Parton Interaction
 - Multiple Scattering
 - Jet Quenching
 - → Photon is less sensitive.

Photon in d+Au is a good probe for modification of initial distribution

FNAL-E706 concluded kT=~1.3GeV/c in pBe collisions

PHENIX

- 3.8km with 2 rings
 - 120bunch/ring
 - 106ns crossing time
- Maximum energy
 - 250GeV for p(polarized)
 - 100GeV/nucleon for Au
- Luminosity
 - Au-Au: $2 \times 10^{26} \text{cm}^{-2} \text{s}^{-2}$
 - p-p : 2 x 10^{32} cm⁻²s⁻²
- 6 Crossing points

2 central Spectrometers

2 forward Spectrometers

- 3 detectors to measure the collision point, the luminosity, and the multiplicity.
 - Beam Beam Counter(BBC)
 - Zero Degree Calorimeter(ZDC)
 - Multiplicity and Vertex Detector(MVD)

Electro-Magnetic Calorimeter

Lead Scintillator (PbSc)

- Sandwich type calorimeter
 - Lead and scintillation plate
 - Shish-kebab type readout

Lead Glass (PbGl)

Total reflection calorimeter

Fine segmented calorimeter.

distinguish two photons from $\pi 0$ photons pT~25GeV/c

History

				instory			
Run	Year	Species	$s^{1/2}$ [GeV] JLdt	N_{tot}	p-p Equivalent	Data Size
01	2000	Au+Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
02	2001/2002	Au+Au	200	24 μb ⁻¹	170M	1.0 pb ⁻¹	10 TB
		p+p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
03	2002/2003	d+Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
		p+p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB
04	2003/2004	Au+Au	200	241 μb ⁻¹	1.5G	10.0 pb ⁻¹	270 TB
		Au+Au	62	9 μb ⁻¹	58M	0.36 pb ⁻¹	10 TB
		p+p	200	0.075 pb ⁻¹	G	0.075 pb ⁻¹	35 TB
05	2004/2005	Cu+Cu	200	15.16 nb ⁻¹	G	pb ⁻¹	ТВ
		Cu+Cu	62	0.52nb-1	G	pb-1	ТВ
		p+p	200	3.8 pb ⁻¹	G	3.8 pb ⁻¹	260 TB

π^0 Production in p+p

π⁰ Production in p+p Collisions

Hadron production in hadron collisions $(1+2\rightarrow 3+X)$

- Parton distribution and fragmentation function were determined from mainly deep inelastic scattering and lepton collisions.
- Several parameterizations of the PDF/FF have already existed.
 - PDF : GRV, CTEQ, MRST FF : BKK, KKP, Kretzer グループ

In this talk, we will compare our results with NLO pQCD calculation.

π⁰'s in p+p: Data vs. pQCD

- Result from run2 result
 - PRL91 (2003) 241803
- Result from run5
 - preliminary
- Comparison of π^0 cross section
 - Next-to-leading order(NLO) pQCD
 - CTEQ6M + KKP or Kretzer
 - Matrix calculation by Aversa, et. al.
 - Renormalization and factorization scales are set to be equal and set to

$$1/2p_{T}, p_{T}, 2p_{T}$$

• Calculated by W.Vogelsang

NLO-pQCD described very well down even to $p_T \sim 1 \text{ GeV/}c$

Various F.F. vs. OPAL(LEP2)

OPAL results are closer to KKP in the range for PHENIX π^0 .

Direct Photon Production in p+p

Direct Photon Production

Direct photon production consists of two processes

$$\sigma = \sigma_{dir} + \sigma_{frag} = \sum_{i,j,k} \int dx_i dx_j \times \boxed{f_1^i(x_i,\mu) \cdot f_2^j(x_j,\mu)} \quad \text{parton distribution function(PDF)} \\ \times \boxed{\sigma(i+j\to\gamma)} + \int dz \, \boxed{\sigma(i+j\to k)} \times \boxed{D_k^3(z_k,\mu_F)} \\ \text{Direct Process} \qquad \qquad \text{Bremsstrahlung Process} \\ \text{Compton/Annihilation process}$$

In this talk, we compare our result with next-to-leading order(NLO) pQCD calculation

How to Measure?

After subtracting all backgrounds, the remained photons are the signals.

Direct Photon in p+p

- PHENIX run3 preliminary result.
 - Recent Update down to 3GeV/c
 - Publication is coming soon.
- NLO-pQCD calculation
 - Private communication with W.Vogelsang
 - CTEQ6M PDF.
 - Sum of direct photon bremsstrhlung photon
 - 3 scales (1/2pT,1pT,2 pT)
 - For renormalization scale factorization scale

pQCD calculation can describe our result very well.

Comparison with pQCD

Aurenche et al Eur. Phys. JC9,10(1999)

Talk by Monique Werlen at RHIC&AGS users meeting 2005

Phenix data clarifies the data/theory puzzle

Comparison with Other Experiment

x_T Scaling

- From QCD, if
 - Q²-Scaling of PDF,FF
 - No running coupling constant(α_s)

$$\sigma = (\sqrt{s})^{-n} \times F(x_T)$$

n=constant_o $x_T = 2p_T / \sqrt{s}$

- Can be express as two terms
 - Interaction
 - Structure
- If leading order n=4
 - Next-to-leading order: $n=4+\alpha$

 x_T -Scaling n=~5

Is Photon Isolated?

Isolation cut to reduce background

$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.5$$
$$E_{sum}(R < 0.5) < E_{\gamma} \times 0.1$$

What the isolation cut

Isolated Photon/Direct Photon

Photons from $\pi 0$ is reduced by the isolation cut. Direct photons are clearly isolated at high pT region.

Isolation Cut vs. pQCD

Isolation cut

 0.1^* E $\gamma > E_{cone(R=0.5rad)}$

By M.Werlen,
 JETPHOX
 -.35
 μ=pT
 BFG set2, CTEQ6M

By W.Vogelsang,R=0.4μ=pT, CTEQ6M

Although our systematic errors are huge,

pQCD predictions (with the PHENIX isolation cut) can describe out data well.

π⁰ & Direct Photon Production in d+Au

π⁰ in d+Au: Data vs. pQCD

- PHENIX run3 d+Au results
 - PRL91(2003)072303
- Nuclear Modification Factor

An NLO pQCD calculation

(+ phenomenological model of Cronin-Effect + Shadowing)

can describe our results

22

p_T (GeV/c)

π^0 in d+Au: Centrality

Direct Photon in d+Aug

- PHENIX preliminary results
 - More data with lower pT region is under analysis.
- NLO pQCD Calculation
 - p+p collisions
 - Calculated by W.Vogelsang
 - CTEQ6M
 - Scale(renormalization and factorization scale)0.5,1.0,2.0pT
- In comparison with d+Au
 - Averaged number of collisions (8.42) from the Glauber model was multiplied to the calculation.

Result is consistent with the binary – scaled NLO-pQCD calculation

Direct Photon in d+Au: Nuclear Modification Factor

Nuclear modification factor compared with $\pi 0$ results

Consistent with 1 → No modification within the error

This is consistent with what we measured in π^0

Conclusion

p+p collisions

- NLO pQCD calculation can describe PHENIX π^0 and direct photon.
 - PHENIX π^0 measurement gave an baseline for gluon fragmentation part.
 - For direct photon, an excess in low pT region (3-5GeV/c) is still under investigation.
- Fit in xT scaling with other experiment
- PHENIX isolation cut confirmed the reduction of photons from $\pi 0$.
 - Efficiency of the PHENIX isolation cut is consistent with a theory prediction.
 - Direct photon signal is isolated in high pT region.

d+Au collisions

- comparison with NLO-pQCD
 - π^0 result is consistent with the binary-scaled NLO-pQCD calculation + Cronin effect + shadowing.
 - Direct photon result is also consistent with the binary-scaled NLO-pQCD calculation although the systematic and statistic errors are larger than that in π^0 .
 - Result is consistent with $\pi 0$